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ABSTRACT 

 
The conservation laws and the equations of state for quasi-1D motion of compressible fluid in pipeline 

are formulated in general form, along with the conservative monotone methods suitable for real (multi-
component, multiphase) working fluids. The objective is to present a concise approach to construct a general 
purpose model of pipeline flow for the applied software package, and to present some validation results. The 
known achievements on higher order monotone schemes for the hyperbolic conservation laws are applied to 
solve problems of flow in pipes. Specifically, characteristic-based reconstruction and approximate solution to 
Riemann problem in Godunov-type schemes are used to incorporate real working fluids’ equations of state 
into explicit numerical schemes. Preliminary validation of the model and the computer code is done for 
equation of state of perfect gas as a special case. Shown are the solutions to problems for 2 validation cases: 
(a) Riemann problem (compared to the exact solution) and (b) problem of wave action (compared to the 
experimental data obtained on a single-cycle installation). The results encourage further generalization and 
testing the model to be applied to real and multiphase fluids and for compliant pipes. 
Keywords: unsteady compressible flow, flow in pipes, one-dimensional model, numerical simulation, 
Godunov-type schemes, validation. 
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INTRODUCTION 
 

Working fluids, in general case, are multi-component and multi-phase mixtures. Flow of such fluid in 
pipeline, in general, is an unsteady motion with the traveling waves. For accuracy and efficiency of 
computational simulation of such flows, corresponding models and numerical schemes must be tested and 
implemented into the applied software packages. 

 
We investigate the adequacy of the model and the applicability of the chosen numerical schemes to 

compute unsteady flows for general industrial applications that (in principle) include complex fluid properties 
and fluid-structure interaction. To formulate a model of flow in pipe with a greater generality, it is needed to 
start with governing equations based on certain basic hypotheses. The equations (in form of conservation 
laws) are being closed with the sub-models of physical interactions (based on additional assumptions). The 
partial differential equations (PDEs) of the resulting model of the process must be solved using numerical 
scheme which must combine higher order of accuracy, stability and monotonicity (ensuring convergence of 
numerical solution to exact solution of problems). To be useful for engineering analysis, the model and the 
numerical scheme are to be integrated into modular software, together with other models of system 
components. The model, the scheme and the implementation of them both, need to be validated on real 
world test cases. 
 

With a view to ameliorate applied software by applying this approach, we've implemented the model 
and the family of computational methods with validation using simple test cases. The governing equations of 
the model express the conservation laws of the quasi-1D flow in integral form (thus ensuring modeling flows 
with discontinuities). Closure models include the model of properties of the fluid – starting from thermal and 
caloric equations of state (EOSs), which are written in general form based on thermal and phase equilibrium 
hypothesis). The family of conservative monotone numerical schemes (that can be considered to be higher 
order Godunov-type [1] methods) is constructed based on piecewise polynomial reconstruction of 
characteristic variables [2] with limiter functions [2–4]. The capability of this family of methods to deal with the 
test problems was to be validated. To do so, we obtained and presented the solutions to (a) Riemann problem 
(compared with exact solution) and (b) problem of wave action (compared with the experimental data 
obtained on a single-cycle test installation). 
 
Related Work 
 

Thus, this work is aimed at developing a model and methods for numerical simulation of wave motion 
of multiphase working fluids, i.e. the universal model and methods for software library for engineering 
analysis. This model must be, first and foremost, adequate (within the limits of its basic hypotheses) to 
describe wave motion of fluids with both idealized and real (and even multiphase) fluid’s EOSs. At the same 
time, a numerical method must be of high-order accuracy and must give solutions that converge to exact 
solutions to the model equations in integral form. 

 
In this regard, we have chosen conservative monotone Godunov-type methods. We considered the 

sub-class of these methods, which uses linearized characteristic relations for spatial reconstruction of the 
solution and for evaluation of fluxes at cell boundaries [1, 2, 4, 5]. At this stage, both the model and numerical 
methods must have been tested, including testing using experimental data (this basic theory and its validation 
were taken as the objective of this article). 
 

Later the EOS of real multiphase fluids will be incorporated into the model (that seems to be rather 
straightforward task), as well as the sub-models of local effects that are important for real world problems – 
viscoelastic behavior of compliant pipes and the unsteady friction [9–11]. Each stage of generalization of the 
model assumes correct implementation, testing and (if necessary) calibration of the model. 
 
Mathematical Model 
 

The basis of mathematical model for engineering analysis of fluid flow in pneumo- and hydromechanic 
systems is a system of governing equations written in rather general form. Their formulation is possible on the 
basis of general hypotheses – assumptions that limit the universality of the resulting model. The closure of the 
governing equations of non-stationary motion of the fluid by the models of specific effects in the flow provides 
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the model which is applicable to the real problems. This model has to be implemented by an efficient 
numerical scheme and then validated (and calibrated, if needed). 
 
Governing equations 
 

To formulate the governing equations, we assume (as general hypotheses) that: 
 
– multi-component (and multi-phase) fluid, that flows within a channel (or "pipe"), can be considered as a 
continuous medium; 
– flow is quasi-1D, i. e. the flow variables are uniformly distributed over cross-sections of the channel: 
 

TYuTptx ]...,/,,,[),(
11
 ψψ ; 

 

– in connection with this, we also assume that the shear stress ),( tx
ww

   and the heat flux density 

),( txqq
ww

  (both are averaged over the local perimeter) affect the fluid element in a cross section instantly, 

as well as the normal stress, which is equal to the thermodynamic pressure ),( txpp  ; 

 
– thermodynamic and phase equilibrium holds locally (i.e., for each particle of such fluid), so that the flow 
variables (other than velocity u ) are interrelated by EOSs; 

 
– transfer in the longitudinal direction is determined by convection and by transfer of momentum and energy 
due to the pressure. 
 

As the consequences of all these assumptions, a system of conservation laws can be written using 
symbolic "vector" notation: 
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specific total energy, 
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  is the shear stress and 
w

q  is the heat flux density (averaged over the perimeter of the 

cross section). For noncompliant pipes (the only case considered here), perimeter   and cross-sectional area 

F  are pre-defined smooth (differentiable) functions of .x  

 
There also must be a one-to-one conversion U  to ,p  where p  is the vector of "primitive" variables 

used in the formulation of the problem (for initial and boundary conditions) and for presenting its solution; in 
this paper 
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Closure models 
 

Governing equations (1) express the conditions of conservation of masses of individual mixture 
constituents, the momentum and the energy of the mixture. A closed system of equations of a specific model 
will be based on conservation laws (1) and will contain equations of specific sub-models. 

 
First, it is necessary to provide the particular equations of state (EOSs) of the multi-component fluid, 

corresponding to the general forms: 
 

),,,()...,,,,(
1

YTpYYTpp
K

                                       (3) 

).,,()...,,,,(
1

YTeYYTee
K

                                          (4) 

 



  ISSN: 0975-8585 

September – October 2016  RJPBCS   7(5)  Page No. 373 

The remaining unknowns in (1): 
w

  and 
w

q , must be expressed using other dependent variables, i. e., 

)),,((),( ttxtx
www

p   and ).),,((),( ttxqtxqq
www

p  Models of friction and heat transfer can be either 

empirical or semi-empirical and ultimately must be calibrated under steady flow conditions. Specific equations 
of these models (as well as the EOSs) are shown below (see Validation section). 
 
Numerical methods 
 

To construct a numerical method that approximates (1) on a mesh of finite volume cells, we define 
n

i
U  as the volume averaged values of the conservative variables for i -th cell at ntt  : 
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Then the spatial approximation of (1) at ntt   takes the form: 
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The order of accuracy of differential operator n

i
L  in (6) is defined by adopted spatial reconstructions 
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certain stencil. 
 
Runge – Kutta integration with respect to time 
 

In order to approximate (1) with respect to time, we use the family of Runge – Kutta methods (thus 
applying method of lines to i th cell). 

 
The Euler method of updating the dependent variables in the cell can be written in this notation as 
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the modified Euler method (second order method with two stages) as 
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and the three-stage, third order "low storage" method (recommended in [4]) as 
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At each stage of each method, the updated primary variables (2) must be calculated from the updated 

conservative variables for the cells. For example, at final stages of all these methods, the calculation of 1n

i
p  

starts by "decoding" the updated "vector" 1n

i
U : 
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the temperature is calculated either explicitly from the caloric EOS (4): ),,( 1111   n
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Piecewise-polynomial reconstruction 
 

To approximate fluxes with respect to x , we use the piecewise-polynomial reconstruction of the 

dependent variables. Piecewise-constant, linear and parabolic reconstructions are used for the methods (7), 
(8)–(9) and (11)–(13), respectively. As proposed in [2], the dependent variables used in these reconstructions 
may be the invariants of the linearized system of equations in characteristic form deduced from (1). Thus, 
passing to the limit as 0 dxx , the governing equations (1) can be (in sub-domains without 

discontinuities) converted to an equivalent system of partial differential equations (PDEs): 
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which can be, in turn, converted to an equivalent characteristic form (with account for the equations of state 
in the general form) [6]. Further, for our purpose, the terms in the right-hand sides of the first three equations 
of the obtained system of PDEs (i. e., terms accounting of variations of composition and of the channel profile, 
of friction and heat transfer to the walls) can be discarded, and the equations can be linearized. This yields: 
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and all I  components (provided that ,


 ,
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  are constants) are the invariants of the system (14) that stay 

unchanged along the respective "characteristic" directions in в ).,( tx  Equations (14) describe the motion of 

the fluid in the "acoustic" approximation, i. e., for small deviations of state variables ,  ...,c  from constants 
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c ). However, the flux evaluation procedures at the cell boundaries based on (14) can be applied [2] to 

problems with nonlinear governing equations (1). 
 

We used (in general) piecewise-parabolic reconstructions of I  components within each cell: 
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The piecewise-parabolic reconstruction (16) with 
max

bb   and 3/1  was applied for the method 

(11)–(13), the piecewise-linear reconstruction ( 1b ) for the method (8)–(9), and the piecewise-constant 

reconstruction ( 0
~~

 n
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II ) for (7). With these settings, the methods provide, respectively, the third, 

second and first order of accuracy [3] when applied to smooth solutions of a "model" hyperbolic equation, for 
example, .0//  xutu  

 
Approximate Riemann solver 
 

Fluxes in the described methods are calculated from approximate solution of the Riemann problem at 
the boundary between two cells. Here, the initial data of the problem are the calculated from (17) and (18) 
invariants of the system (14). Thus, at the first stage of each method: 
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The dependent variables at the boundary (for example, at the first stages of methods) are defined by 

(15), as proposed in [2]: 
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Note that the described above calculation can be implemented iteratively, but we used it in a simplest 
fashion, with the following simplistic initial guess for the velocity and the speed of sound at the cell boundary: 
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where uFG   is the mass flow rate of the fluid and 2/2// 22* uhupeh   is its specific total 

enthalpy. 
 
Validation 
 

To validate the model and its numerical implementation, we solved the following two test problems. 
 
The first test case is the Riemann problem, which has a well known exact solution. 

 
The second test is a series of simulations of unsteady motion of air in a special installation, compared 

with experiments. For both cases, a model of the perfect gas was used for EOSs of the compressible fluid: 
RTp   and Tce

V
 with constant parameters 1,287R J/(kg · K) and 4,1/)( 

VVp
cRcc  that 

corresponds to the air. With such EOSs, the mass fraction 
1

Y  of the 1st constituent of the mixture can be 

considered as a "passive scalar".  
 
Riemann problem 
 

The Riemann problem was chosen for the first test case, in which the following parameter vectors 

were set as initial conditions in semi-spaces to the left (L) and to the right (R) from 50
max

x m: 
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The model (1) with ,0F  0
w

  and 0
w

q  was used, which allowed to describe the "self-similar" 

flow pattern with the centered rarefaction wave, contact discontinuity and shock wave. 
 
Computational mesh contained 100 equally sized cells ( 0.1x m), 180N  time steps with t  

corresponding to the Courant number of 0.25. Numerical solutions to the test problem were obtained by three 
methods of various orders of accuracy in time (11)–(13) and reconstructions in x  of corresponding orders of 

accuracy. The numerical solutions ,N

i
p ,N

i
T N

i
u  and N

i
Y )(

1
 (for tNt N  ) and the exact solution are plotted in 

Fig. 1. 
 

This test has shown the almost complete absence of oscillations at discontinuities in solutions 
obtained by all three methods. Also it is shown a substantial reduction of the numerical diffusion with an 
increase in the formal order of accuracy of the method (as it is usually the case for the methods of this class). 
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Fig.1. Numerical solutions to the Riemann problem (by methods of the 1st, 2nd and 3rd order of accuracy) compared with 
the exact solution. 

 
Waves traveling in a pipeline 
 

By testing the model and the numerical methods on the gas dynamics problem with known exact 
solution, we proved merely the correctness of a software implementation of the "core" of the model. Further, 
the model was to be tested by simulating the wave action in a pipeline with friction and heat transfer to the 
walls. 
 

We used the measurements of rapidly varying pressure obtained on the pipeline with finite-amplitude 
waves in the air as a working fluid. 
 

The general view of the experimental installation [7] with the wave generator is shown in Fig. 2, a, and 
the pipeline schematic views with sensors (two variants of setup) is shown in Fig. 2, b and c. 

 

The lengths of the individual pipes (see Fig. 2, b and c) are 3028
1
l  mm and 3692

2
l  mm; their 

diameters: 1,24
1
d mm and 4,24

2
d mm, coordinates of the sensors: 781

1


p
l  mm and 922

2


p
l mm; 

volume of the plenum: 2,748V cm3; the parameters of the environment (air in the laboratory) are 

26,100
0
p kPa и 3,299

0
T K. 
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Fig.2. The installation (a) view; (b) and (c): two variants of its pipeline and sensors setup. 

 

The model (1) used here assumed constF  for each individual pipe, and 
w

  и 
w

q were determined 

by the models valid for the steady flow: the shear stress was expressed as: 
 

,
2 


F

d

uu

eff

w


  

 

where ,8,0)(Relog2/1
10

  and the local heat flux density was determined using the Reynolds 

analogy: 
 

.
2

where),(
2

2
**

p

wp

eff

w
c

u
TTTTc

F

d

u
q 





  

 
In addition to the model of flow within the channel, rather basic models of the plenum and of the flow 

through the flow restriction were used. 
 
Models of flow restrictions and their incorporation into numerical scheme are described in [8]. 

 

Total pressure losses (on steel diaphragms of various diameters 
0

d  and on "Bernoulli lemniscate", 

see. Fig. 2, b and c) were specified by the characteristics in the forms )(/
in

*

in

*

out
Mpp   and 

),(/
out

*

in

*

out
Mpp   which have been obtained by blow down under stationary flow conditions. Characteristic 

of losses in air flow into the plenum through a poppet valve was specified in the form ),(/
in

*

ine
hMpp  , 
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based on the results of 2D CFD simulation. "Laws" of the valve lift )(th were specified after optimizing the free 

parameters of )(th  in terms of best fit of the computed and the measured pressure profiles in initial 

rarefaction wave. 
 
Calculations were carried out by three-stage higher order method (11)–(13), with cell sizes of 

15x mm and a time step of 510 t s (so that mesh is fine enough to eliminate effect of these parameters 

on the numerical solution). Calculated and measured pressures on the sensors are shown in Fig. 3 (for 2 
experiments corresponding to installation setup shown in Fig. 2, b) and in Fig. 4 are for the setup shown in 
Fig. 2, c. 

 
From the graphs in Fig. 3 and 4, one can see that qualitatively all the wave patterns are reproduced 

well by the model. The marked quantitative difference is observed mainly in the speed of the waves 
(calculated speed is overstated by 2-2.5%). This “effect” is well known in unsteady flows of water and gas and 
is attributed to the unsteady nature of friction phenomena [9, 10]. 
 

 
 

Fig.3. Computed vs. measured )(
1

tp  on the pressure sensor (Fig. 2, b): (a) "Bernoulli lemniscate" and (b) 18
0
d mm 

at the end of the pipe 
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Fig.4. Computed vs. measured )(
1

tp  and )(
2

tp  (see. Fig. 2, c): (a) no diaphragm and (b) diaphragm with 14
0
d mm 

(between the pipes) 

 
CONCLUSION 

 
This model and the numerical methods tested are already included into the applied model library for 

engineering analysis. 
 
Generalization and further testing of the model and the methods are needed to account for effects of 

unsteady friction, viscoelastic pipe wall compliance and local flow restrictions. The models of significant local 
effects must be represented (along with the adequate EOS for real multiphase fluid) within the general system 
of conservation laws, and must be solved with the higher order monotone method. 

 
The results obtained to date by other researchers [9–11] encourage incorporation sub-models of such 

effects into the model and further testing it as well as the class of numerical methods used. 
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